Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Lancet Infect Dis ; 24(1): 75-86, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37625434

ABSTRACT

BACKGROUND: Seasonal vaccination with the RTS,S/AS01E vaccine combined with seasonal malaria chemoprevention (SMC) prevented malaria in young children more effectively than either intervention given alone over a 3 year period. The objective of this study was to establish whether the added protection provided by the combination could be sustained for a further 2 years. METHODS: This was a double-blind, individually randomised, controlled, non-inferiority and superiority, phase 3 trial done at two sites: the Bougouni district and neighbouring areas in Mali and Houndé district, Burkina Faso. Children who had been enrolled in the initial 3-year trial when aged 5-17 months were initially randomly assigned individually to receive SMC with sulphadoxine-pyrimethamine and amodiaquine plus control vaccines, RTS,S/AS01E plus placebo SMC, or SMC plus RTS,S/AS01E. They continued to receive the same interventions until the age of 5 years. The primary trial endpoint was the incidence of clinical malaria over the 5-year trial period in both the modified intention-to-treat and per-protocol populations. Over the 5-year period, non-inferiority was defined as a 20% increase in clinical malaria in the RTS,S/AS01E-alone group compared with the SMC alone group. Superiority was defined as a 12% difference in the incidence of clinical malaria between the combined and single intervention groups. The study is registered with ClinicalTrials.gov, NCT04319380, and is complete. FINDINGS: In April, 2020, of 6861 children originally recruited, 5098 (94%) of the 5433 children who completed the initial 3-year follow-up were re-enrolled in the extension study. Over 5 years, the incidence of clinical malaria per 1000 person-years at risk was 313 in the SMC alone group, 320 in the RTS,S/AS01E-alone group, and 133 in the combined group. The combination of RTS,S/AS01E and SMC was superior to SMC (protective efficacy 57·7%, 95% CI 53·3 to 61·7) and to RTS,S/AS01E (protective efficacy 59·0%, 54·7 to 62·8) in preventing clinical malaria. RTS,S/AS01E was non-inferior to SMC (hazard ratio 1·03 [95% CI 0·95 to 1·12]). The protective efficacy of the combination versus SMC over the 5-year period of the study was very similar to that seen in the first 3 years with the protective efficacy of the combination versus SMC being 57·7% (53·3 to 61·7) and versus RTS/AS01E-alone being 59·0% (54·7 to 62·8). The comparable figures for the first 3 years of the study were 62·8% (58·4 to 66·8) and 59·6% (54·7 to 64·0%), respectively. Hospital admissions for WHO-defined severe malaria were reduced by 66·8% (95% CI 40·3 to 81·5), for malarial anaemia by 65·9% (34·1 to 82·4), for blood transfusion by 68·1% (32·6 to 84·9), for all-cause deaths by 44·5% (2·8 to 68·3), for deaths excluding external causes or surgery by 41·1% (-9·2 to 68·3), and for deaths from malaria by 66·8% (-2·7 to 89·3) in the combined group compared with the SMC alone group. No safety signals were detected. INTERPRETATION: Substantial protection against malaria was sustained over 5 years by combining seasonal malaria vaccination with seasonal chemoprevention, offering a potential new approach to malaria control in areas with seasonal malaria transmission. FUNDING: UK Joint Global Health Trials and PATH's Malaria Vaccine Initiative (through a grant from the Bill & Melinda Gates Foundation). TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Child , Humans , Infant , Child, Preschool , Mali/epidemiology , Burkina Faso/epidemiology , Seasons , Malaria/epidemiology , Malaria/prevention & control , Vaccination , Chemoprevention , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control
2.
BMC Med ; 20(1): 352, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36203149

ABSTRACT

BACKGROUND: A recent trial of 5920 children in Burkina Faso and Mali showed that the combination of seasonal vaccination with the RTS,S/AS01E malaria vaccine (primary series and two seasonal boosters) and seasonal malaria chemoprevention (four monthly cycles per year) was markedly more effective than either intervention given alone in preventing clinical malaria, severe malaria, and deaths from malaria. METHODS: In order to help optimise the timing of these two interventions, trial data were reanalysed to estimate the duration of protection against clinical malaria provided by RTS,S/AS01E when deployed seasonally, by comparing the group who received the combination of SMC and RTS,S/AS01E with the group who received SMC alone. The duration of protection from SMC was also estimated comparing the combined intervention group with the group who received RTS,S/AS01E alone. Three methods were used: Piecewise Cox regression, Flexible parametric survival models and Smoothed Schoenfeld residuals from Cox models, stratifying on the study area and using robust standard errors to control for within-child clustering of multiple episodes. RESULTS: The overall protective efficacy from RTS,S/AS01E over 6 months was at least 60% following the primary series and the two seasonal booster doses and remained at a high level over the full malaria transmission season. Beyond 6 months, protective efficacy appeared to wane more rapidly, but the uncertainty around the estimates increases due to the lower number of cases during this period (coinciding with the onset of the dry season). Protection from SMC exceeded 90% in the first 2-3 weeks post-administration after several cycles, but was not 100%, even immediately post-administration. Efficacy begins to decline from approximately day 21 and then declines more sharply after day 28, indicating the importance of preserving the delivery interval for SMC cycles at a maximum of four weeks. CONCLUSIONS: The efficacy of both interventions was highest immediately post-administration. Understanding differences between these interventions in their peak efficacy and how rapidly efficacy declines over time will help to optimise the scheduling of SMC, malaria vaccination and the combination in areas of seasonal transmission with differing epidemiology, and using different vaccine delivery systems. TRIAL REGISTRATION: The RTS,S-SMC trial in which these data were collected was registered at clinicaltrials.gov: NCT03143218.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Antibodies, Protozoan , Chemoprevention , Humans , Infant , Malaria/epidemiology , Malaria/prevention & control , Malaria, Falciparum/epidemiology , Plasmodium falciparum , Seasons , Vaccination
3.
Malar J ; 21(1): 59, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35193608

ABSTRACT

BACKGROUND: A recent trial in Burkina Faso and Mali showed that combining seasonal RTS,S/AS01E malaria vaccination with seasonal malaria chemoprevention (SMC) substantially reduced the incidence of uncomplicated and severe malaria in young children compared to either intervention alone. Given the possible negative effect of malaria on nutrition, the study investigated whether these children also experienced lower prevalence of acute and chronic malnutrition. METHODS: In Burkina Faso and Mali 5920 children were randomized to receive either SMC alone, RTS,S/AS01E alone, or SMC combined with RTS,S/AS01E for three malaria transmission seasons (2017-2019). After each transmission season, anthropometric measurements were collected from all study children at a cross-sectional survey and used to derive nutritional status indicators, including the binary variables wasted and stunted (weight-for-height and height-for-age z-scores below - 2, respectively). Binary and continuous outcomes between treatment groups were compared by Poisson and linear regression. RESULTS: In 2017, compared to SMC alone, the combined intervention reduced the prevalence of wasting by approximately 12% [prevalence ratio (PR) = 0.88 (95% CI 0.75, 1.03)], and approximately 21% in 2018 [PR = 0.79 (95% CI 0.62, 1.01)]. Point estimates were similar for comparisons with RTS,S/AS01E, but there was stronger evidence of a difference. There was at least a 30% reduction in the point estimates for the prevalence of severe wasting in the combined group compared to the other two groups in 2017 and 2018. There was no difference in the prevalence of moderate or severe wasting between the groups in 2019. The prevalence of stunting, low-MUAC-for-age or being underweight did not differ between groups for any of the three years. The prevalence of severe stunting was higher in the combined group compared to both other groups in 2018, and compared to RTS,S/AS01E alone in 2017; this observation does not have an obvious explanation and may be a chance finding. Overall, malnutrition was very common in this cohort, but declined over the study as the children became older. CONCLUSIONS: Despite a high burden of malnutrition and malaria in the study populations, and a major reduction in the incidence of malaria in children receiving both interventions, this had only a modest impact on nutritional status. Therefore, other interventions are needed to reduce the high burden of malnutrition in these areas. TRIAL REGISTRATION: https://www.clinicaltrials.gov/ct2/show/NCT03143218 , registered 8th May 2017.


Subject(s)
Antimalarials , Malaria , Antimalarials/therapeutic use , Burkina Faso/epidemiology , Chemoprevention , Child , Child, Preschool , Cross-Sectional Studies , Humans , Infant , Malaria/drug therapy , Malaria/epidemiology , Malaria/prevention & control , Mali/epidemiology , Nutritional Status , Seasons , Vaccination
4.
Clin Infect Dis ; 75(4): 613-622, 2022 09 10.
Article in English | MEDLINE | ID: mdl-34894221

ABSTRACT

BACKGROUND: A trial in African children showed that combining seasonal vaccination with the RTS,S/AS01E vaccine with seasonal malaria chemoprevention reduced the incidence of uncomplicated and severe malaria compared with either intervention given alone. Here, we report on the anti-circumsporozoite antibody response to seasonal RTS,S/AS01E vaccination in children in this trial. METHODS: Sera from a randomly selected subset of children collected before and 1 month after 3 priming doses of RTS,S/AS01E and before and 1 month after 2 seasonal booster doses were tested for anti-circumsporozoite antibodies using enzyme-linked immunosorbent assay. The association between post-vaccination antibody titer and incidence of malaria was explored. RESULTS: A strong anti-circumsporozoite antibody response to 3 priming doses of RTS,S/AS01E was seen (geometric mean titer, 368.9 enzyme-linked immunosorbent assay units/mL), but titers fell prior to the first booster dose. A strong antibody response to an annual, pre-malaria transmission season booster dose was observed, but this was lower than after the primary vaccination series and lower after the second than after the first booster dose (ratio of geometric mean rise, 0.66; 95% confidence interval [CI], .57-.77). Children whose antibody response was in the upper tercile post-vaccination had a lower incidence of malaria during the following year than children in the lowest tercile (hazard ratio, 0.43; 95% CI, .28-.66). CONCLUSIONS: Seasonal vaccination with RTS,S/AS01E induced a strong booster antibody response that was lower after the second than after the first booster dose. The diminished antibody response to the second booster dose was not associated with diminished efficacy. CLINICAL TRIALS REGISTRATION: NCT03143218.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Antibody Formation , Child , Humans , Infant , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Plasmodium falciparum , Seasons , Vaccination
5.
N Engl J Med ; 385(11): 1005-1017, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34432975

ABSTRACT

BACKGROUND: Malaria control remains a challenge in many parts of the Sahel and sub-Sahel regions of Africa. METHODS: We conducted an individually randomized, controlled trial to assess whether seasonal vaccination with RTS,S/AS01E was noninferior to chemoprevention in preventing uncomplicated malaria and whether the two interventions combined were superior to either one alone in preventing uncomplicated malaria and severe malaria-related outcomes. RESULTS: We randomly assigned 6861 children 5 to 17 months of age to receive sulfadoxine-pyrimethamine and amodiaquine (2287 children [chemoprevention-alone group]), RTS,S/AS01E (2288 children [vaccine-alone group]), or chemoprevention and RTS,S/AS01E (2286 children [combination group]). Of these, 1965, 1988, and 1967 children in the three groups, respectively, received the first dose of the assigned intervention and were followed for 3 years. Febrile seizure developed in 5 children the day after receipt of the vaccine, but the children recovered and had no sequelae. There were 305 events of uncomplicated clinical malaria per 1000 person-years at risk in the chemoprevention-alone group, 278 events per 1000 person-years in the vaccine-alone group, and 113 events per 1000 person-years in the combination group. The hazard ratio for the protective efficacy of RTS,S/AS01E as compared with chemoprevention was 0.92 (95% confidence interval [CI], 0.84 to 1.01), which excluded the prespecified noninferiority margin of 1.20. The protective efficacy of the combination as compared with chemoprevention alone was 62.8% (95% CI, 58.4 to 66.8) against clinical malaria, 70.5% (95% CI, 41.9 to 85.0) against hospital admission with severe malaria according to the World Health Organization definition, and 72.9% (95% CI, 2.9 to 92.4) against death from malaria. The protective efficacy of the combination as compared with the vaccine alone against these outcomes was 59.6% (95% CI, 54.7 to 64.0), 70.6% (95% CI, 42.3 to 85.0), and 75.3% (95% CI, 12.5 to 93.0), respectively. CONCLUSIONS: Administration of RTS,S/AS01E was noninferior to chemoprevention in preventing uncomplicated malaria. The combination of these interventions resulted in a substantially lower incidence of uncomplicated malaria, severe malaria, and death from malaria than either intervention alone. (Funded by the Joint Global Health Trials and PATH; ClinicalTrials.gov number, NCT03143218.).


Subject(s)
Amodiaquine/therapeutic use , Antimalarials/therapeutic use , Malaria Vaccines , Malaria, Falciparum/prevention & control , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Antimalarials/adverse effects , Burkina Faso/epidemiology , Chemoprevention , Combined Modality Therapy , Double-Blind Method , Drug Combinations , Drug Therapy, Combination , Female , Hospitalization/statistics & numerical data , Humans , Infant , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Malaria, Falciparum/epidemiology , Malaria, Falciparum/mortality , Male , Mali/epidemiology , Seasons , Seizures, Febrile/etiology
6.
Malar J ; 20(1): 274, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34158054

ABSTRACT

BACKGROUND: Malaria and malnutrition remain major problems in Sahel countries, especially in young children. The direct effect of malnutrition on malaria remains poorly understood, and may have important implications for malaria control. In this study, nutritional status and the association between malnutrition and subsequent incidence of symptomatic malaria were examined in children in Burkina Faso and Mali who received either azithromycin or placebo, alongside seasonal malaria chemoprevention. METHODS: Mid-upper arm circumference (MUAC) was measured in all 20,185 children who attended a screening visit prior to the malaria transmission season in 2015. Prior to the 2016 malaria season, weight, height and MUAC were measured among 4149 randomly selected children. Height-for-age, weight-for-age, weight-for-height, and MUAC-for-age were calculated as indicators of nutritional status. Malaria incidence was measured during the following rainy seasons. Multivariable random effects Poisson models were created for each nutritional indicator to study the effect of malnutrition on clinical malaria incidence for each country. RESULTS: In both 2015 and 2016, nutritional status prior to the malaria season was poor. The most prevalent form of malnutrition in Burkina Faso was being underweight (30.5%; 95% CI 28.6-32.6), whereas in Mali stunting was most prevalent (27.5%; 95% CI 25.6-29.5). In 2016, clinical malaria incidence was 675 per 1000 person-years (95% CI 613-744) in Burkina Faso, and 1245 per 1000 person-years (95% CI 1152-1347) in Mali. There was some evidence that severe stunting was associated with lower incidence of malaria in Mali (RR 0.81; 95% CI 0.64-1.02; p = 0.08), but this association was not seen in Burkina Faso. Being moderately underweight tended to be associated with higher incidence of clinical malaria in Burkina Faso (RR 1.27; 95% CI 0.98-1.64; p = 0.07), while this was the case in Mali for moderate wasting (RR 1.27; 95% CI 0.98-1.64; p = 0.07). However, these associations were not observed in severely affected children, nor consistent between countries. MUAC-for-age was not associated with malaria risk. CONCLUSIONS: Both malnutrition and malaria were common in the study areas, high despite high coverage of seasonal malaria chemoprevention and long-lasting insecticidal nets. However, no strong or consistent evidence was found for an association between any of the nutritional indicators and the subsequent incidence of clinical malaria.


Subject(s)
Antimalarials/administration & dosage , Azithromycin/administration & dosage , Malaria/epidemiology , Malnutrition/epidemiology , Nutritional Status , Burkina Faso/epidemiology , Child, Preschool , Female , Humans , Incidence , Infant , Malaria/transmission , Male , Mali/epidemiology , Malnutrition/classification , Seasons
7.
Clin Infect Dis ; 73(7): e2379-e2386, 2021 10 05.
Article in English | MEDLINE | ID: mdl-33417683

ABSTRACT

BACKGROUND: Mass drug administration (MDA) with azithromycin (AZ) is being considered as a strategy to promote child survival in sub-Saharan Africa, but the mechanism by which AZ reduces mortality is unclear. To better understand the nature and extent of protection provided by AZ, we explored the profile of protection by time since administration, using data from a household-randomized, placebo-controlled trial in Burkina Faso and Mali. METHODS: Between 2014 and 2016, 30 977 children aged 3-59 months received seasonal malaria chemoprevention (SMC) with sulfadoxine-pyrimethamine plus amodiaquine and either AZ or placebo monthly, on 4 occasions each year. Poisson regression with gamma-distributed random effects, accounting for the household randomization and within-individual clustering of illness episodes, was used to compare incidence of prespecified outcomes between SMC+AZ versus SMC+placebo groups in fixed time strata post-treatment. The likelihood ratio test was used to assess evidence for a time-treatment group interaction. RESULTS: Relative to SMC+placebo, there was no evidence of protection from SMC+AZ against hospital admissions and deaths. Additional protection from SMC+AZ against malaria was confined to the first 2 weeks post-administration (protective efficacy (PE): 24.2% [95% CI: 17.8%, 30.1%]). Gastroenteritis and pneumonia were reduced by 29.9% [21.7; 37.3%], and 34.3% [14.9; 49.3%], respectively, in the first 2 weeks postadministration. Protection against nonmalaria fevers with a skin condition persisted up to 28 days: PE: 46.3% [35.1; 55.6%]. CONCLUSIONS: The benefits of AZ-MDA are broad-ranging but short-lived. To maximize impact, timing of AZ-MDA must address the challenge of targeting asynchronous morbidity and mortality peaks from different causes.


Subject(s)
Antimalarials , Malaria , Antimalarials/therapeutic use , Azithromycin/therapeutic use , Burkina Faso/epidemiology , Chemoprevention , Child, Preschool , Drug Combinations , Humans , Infant , Malaria/drug therapy , Malaria/epidemiology , Malaria/prevention & control , Mali/epidemiology , Seasons
8.
Trop Med Infect Dis ; 6(1)2021 Jan 24.
Article in English | MEDLINE | ID: mdl-33498803

ABSTRACT

In Mali, since 2007, artemether-lumefantrine has been the first choice against uncomplicated malaria. Despite its effectiveness, a rapid selection of markers of resistance to partner drugs has been documented. This work evaluated the treatment according to the World Health Organization's standard 28-day treatment method. The primary endpoint was the clinical and parasitological response corrected by a polymerase chain reaction. It was more than 99.9 percent, the proportion of patients with anemia significantly decrease compared to baseline (p < 0.001), and no serious events were recorded. Plasmodium falciparum remains sensitive to artemether-lumefantrine in Mali.

9.
BMJ Open ; 10(9): e035433, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32933955

ABSTRACT

INTRODUCTION: Seasonal malaria chemoprevention (SMC), with sulphadoxine-pyrimethamine plus amodiaquine (SP+AQ) is effective but does not provide complete protection against clinical malaria. The RTS,S/AS01E malaria vaccine provides a high level of protection shortly after vaccination, but this wanes rapidly. Such a vaccine could be an alternative or additive to SMC. This trial aims to determine whether seasonal vaccination with RTS,S/AS01E vaccine could be an alternative to SMC and whether a combination of the two interventions would provide added benefits. METHODS AND ANALYSIS: This is an individually randomised, double-blind, placebo-controlled trial. 5920 children aged 5-17 months were enrolled in April 2017 in Mali and Burkina Faso. Children in group 1 received three priming doses of RTS,S/AS01E vaccine before the start of the 2017 malaria transmission season and a booster dose at the beginning of two subsequent transmission seasons. In addition, they received SMC SP+AQ placebo on four occasions each year. Children in group 2 received three doses of rabies vaccine in year 1 and hepatitis A vaccine in years 2 and 3 together with four cycles of SMC SP+AQ each year. Children in group 3 received RTS,S/AS01E vaccine and four courses of SMC SP+AQ. Incidence of clinical malaria is determined by case detection at health facilities. Weekly active surveillance for malaria is undertaken in a randomly selected subset of children. The prevalence of malaria is measured in surveys at the end of each transmission season. The primary endpoint is the incidence of clinical malaria confirmed by a positive blood film with a minimum parasite density of 5000 /µL. Primary analysis will be by modified intention to treat defined as children who have received the first dose of the malaria or control vaccine. ETHICS AND DISSEMINATION: The protocol was approved by the national ethics committees of Mali and Burkina Faso and the London School of Hygiene and Tropical Medicine. The results will be presented to all stakeholders and published in open access journals. TRIAL REGISTRATION NUMBER: NCT03143218; Pre-results.


Subject(s)
Antimalarials , Malaria Vaccines , Malaria, Falciparum , Malaria , Antimalarials/therapeutic use , Burkina Faso/epidemiology , Chemoprevention , Child , Clinical Trials, Phase III as Topic , Humans , Infant , London , Malaria/drug therapy , Malaria/epidemiology , Malaria/prevention & control , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Mali , Randomized Controlled Trials as Topic , Seasons , Vaccination
10.
PLoS Med ; 17(8): e1003214, 2020 08.
Article in English | MEDLINE | ID: mdl-32822362

ABSTRACT

BACKGROUND: Seasonal malaria chemoprevention (SMC) is now widely deployed in the Sahel, including several countries that are major contributors to the global burden of malaria. Consequently, it is important to understand whether SMC continues to provide a high level of protection and how SMC might be improved. SMC was evaluated using data from a large, household-randomised trial in Houndé, Burkina Faso and Bougouni, Mali. METHODS AND FINDINGS: The parent trial evaluated monthly SMC plus either azithromycin (AZ) or placebo, administered as directly observed therapy 4 times per year between August and November (2014-2016). In July 2014, 19,578 children aged 3-59 months were randomised by household to study group. Children who remained within the age range 3-59 months in August each year, plus children born into study households or who moved into the study area, received study drugs in 2015 and 2016. These analyses focus on the approximately 10,000 children (5,000 per country) under observation each year in the SMC plus placebo group. Despite high coverage and high adherence to SMC, the incidence of hospitalisations or deaths due to malaria and uncomplicated clinical malaria remained high in the study areas (overall incidence rates 12.5 [95% confidence interval (CI): 11.2, 14.1] and 871.1 [95% CI: 852.3, 890.6] cases per 1,000 person-years, respectively) and peaked in July each year, before SMC delivery began in August. The incidence rate ratio comparing SMC within the past 28 days with SMC more than 35 days ago-adjusted for age, country, and household clustering-was 0.13 (95% CI: 0.08, 0.20), P < 0.001 for malaria hospitalisations and deaths from malaria and 0.21 (95% CI 0.20, 0.23), P < 0.001 for uncomplicated malaria, indicating protective efficacy of 87.4% (95% CI: 79.6%, 92.2%) and 78.3% (95% CI: 76.8%, 79.6%), respectively. The prevalence of malaria parasitaemia at weekly surveys during the rainy season and at the end of the transmission season was several times higher in children who missed the SMC course preceding the survey contact, and the smallest prevalence ratio observed was 2.98 (95% CI: 1.95, 4.54), P < 0.001. The frequency of molecular markers of sulfadoxine-pyrimethamine (SP) and amodiaquine (AQ) resistance did not increase markedly over the study period either amongst study children or amongst school-age children resident in the study areas. After 3 years of SMC deployment, the day 28 PCR-unadjusted adequate clinical and parasitological response rate of the SP + AQ regimen in children with asymptomatic malaria was 98.3% (95% CI: 88.6%, 99.8%) in Burkina Faso and 96.1% (95% CI: 91.5%, 98.2%) in Mali. Key limitations of this study are the potential overdiagnosis of uncomplicated malaria by rapid diagnostic tests and the potential for residual confounding from factors related to adherence to the monthly SMC schedule. CONCLUSION: Despite strong evidence that SMC is providing a high level of protection, the burden of malaria remains substantial in the 2 study areas. These results emphasise the need for continuing support of SMC programmes. A fifth monthly SMC course is needed to adequately cover the whole transmission season in the study areas and in settings with similar epidemiology. TRIAL REGISTRATION: The AZ-SMC trial in which these data were collected was registered at clinicaltrials.gov: NCT02211729.


Subject(s)
Antimalarials/administration & dosage , Family Characteristics , Malaria/epidemiology , Malaria/prevention & control , Seasons , Burkina Faso/epidemiology , Chemoprevention/methods , Child , Child, Preschool , Cohort Studies , Female , Follow-Up Studies , Humans , Infant , Malaria/blood , Male , Mali/epidemiology
11.
Trop Med Int Health ; 25(6): 740-750, 2020 06.
Article in English | MEDLINE | ID: mdl-32166877

ABSTRACT

OBJECTIVES: Mass administration of azithromycin has reduced mortality in children in sub-Saharan Africa but its mode of action is not well characterised. A recent trial found that azithromycin given alongside seasonal malaria chemoprevention was not associated with a reduction in mortality or hospital admissions in young children. We investigated the effect of azithromycin on the nutritional status of children enrolled in this study. METHODS: A total of 19 578 children in Burkina Faso and Mali were randomised to receive either azithromycin or placebo alongside seasonal malaria chemoprevention with sulfadoxine-pyrimethamine plus amodiaquine monthly for three malaria transmission seasons (2014-2016). After each transmission season, anthropometric measurements were collected from approximately 4000 randomly selected children (2000 per country) at a cross-sectional survey and used to derive nutritional status indicators. Binary and continuous outcomes between treatment arms were compared by Poisson and linear regression. RESULTS: Nutritional status among children was poor in both countries with evidence of acute and chronic malnutrition (24.9-33.3% stunted, 15.8-32.0% underweight, 7.2-26.4% wasted). There was a suggestion of improvement in nutritional status in Burkina Faso and deterioration in Mali over the study period. At the end of each malaria transmission season, nutritional status of children did not differ between treatment arms (seasonal malaria chemoprevention plus azithromycin or placebo) in either the intention-to-treat or per-protocol analyses (only children with at least three cycles of SMC in the current intervention year). CONCLUSIONS: The addition of azithromycin to seasonal malaria chemoprevention did not result in an improvement of nutritional outcomes in children in Burkina Faso and Mali.


OBJECTIFS: L'administration massive d'azithromycine a réduit la mortalité infantile en Afrique subsaharienne mais son mode d'action n'est pas bien caractérisé. Un essai récent a révélé que l'azithromycine administrée parallèlement à la chimioprévention du paludisme saisonnier n'était pas associée à une réduction de la mortalité ou des hospitalisations chez les jeunes enfants. Nous avons étudié l'effet de l'azithromycine sur l'état nutritionnel des enfants inscrits à cette étude. MÉTHODES: 19.578 enfants au Burkina Faso et au Mali ont été randomisés pour recevoir soit de l'azithromycine soit un placebo parallèlement à une chimioprévention du paludisme saisonnier avec du sulfadoxine-pyriméthamine plus de l'amodiaquine par mois pendant trois saisons de transmission du paludisme (2014-2016). Après chaque saison de transmission, des mesures anthropométriques ont été recueillies auprès d'environ 4.000 enfants sélectionnés au hasard (2.000 par pays) lors d'une enquête transversale et utilisées pour dériver des indicateurs de l'état nutritionnel. Les résultats binaires et continus entre les bras de traitement ont été comparés par la régression linéaire et de Poisson. RÉSULTATS: L'état nutritionnel des enfants était médiocre dans les deux pays avec des signes de malnutrition aiguë et chronique (24,9 à 33,3% de retard de croissance, 15,8 à 32,0% d'insuffisance pondérale, 7,2 à 26,4% d'émaciation). Il a été suggéré une amélioration de l'état nutritionnel au Burkina Faso et une détérioration au Mali au cours de la période d'étude. A la fin de chaque saison de transmission du paludisme, l'état nutritionnel des enfants ne différait pas entre les bras de traitement (chimioprévention contre le paludisme saisonnier plus azithromycine ou placebo) dans les analyses en intention de traiter ou selon le protocole (seulement les enfants avec au moins trois cycles de chimioprévention dans l'année d'intervention en cours). CONCLUSIONS: L'ajout d'azithromycine à la chimioprévention du paludisme saisonnier n'a pas entraîné d'amélioration des résultats nutritionnels chez les enfants au Burkina Faso et au Mali.


Subject(s)
Antimalarials/therapeutic use , Azithromycin/therapeutic use , Child Nutrition Disorders/epidemiology , Malaria/prevention & control , Antimalarials/administration & dosage , Azithromycin/administration & dosage , Burkina Faso , Chemoprevention , Child, Preschool , Cross-Sectional Studies , Drug Therapy, Combination , Female , Humans , Infant , Male , Mali , Mass Drug Administration , Nutritional Status , Seasons
12.
N Engl J Med ; 380(23): 2197-2206, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-30699301

ABSTRACT

BACKGROUND: Mass administration of azithromycin for trachoma control led to a sustained reduction in all-cause mortality among Ethiopian children. Whether the addition of azithromycin to the monthly sulfadoxine-pyrimethamine plus amodiaquine used for seasonal malaria chemoprevention could reduce mortality and morbidity among African children was unclear. METHODS: We randomly assigned children 3 to 59 months of age, according to household, to receive either azithromycin or placebo, together with sulfadoxine-pyrimethamine plus amodiaquine, during the annual malaria-transmission season in Burkina Faso and Mali. The drug combinations were administered in four 3-day cycles, at monthly intervals, for three successive seasons. The primary end point was death or hospital admission for at least 24 hours that was not due to trauma or elective surgery. Data were recorded by means of active and passive surveillance. RESULTS: In July 2014, a total of 19,578 children were randomly assigned to receive seasonal malaria chemoprevention plus either azithromycin (9735 children) or placebo (9843 children); each year, children who reached 5 years of age exited the trial and new children were enrolled. In the intention-to-treat analysis, the overall number of deaths and hospital admissions during three malaria-transmission seasons was 250 in the azithromycin group and 238 in the placebo group (events per 1000 child-years at risk, 24.8 vs. 23.5; incidence rate ratio, 1.1; 95% confidence interval [CI], 0.88 to 1.3). Results were similar in the per-protocol analysis. The following events occurred less frequently with azithromycin than with placebo: gastrointestinal infections (1647 vs. 1985 episodes; incidence rate ratio, 0.85; 95% CI, 0.79 to 0.91), upper respiratory tract infections (4893 vs. 5763 episodes; incidence rate ratio, 0.85; 95% CI, 0.81 to 0.90), and nonmalarial febrile illnesses (1122 vs. 1424 episodes; incidence rate ratio, 0.79; 95% CI, 0.73 to 0.87). The prevalence of malaria parasitemia and incidence of adverse events were similar in the two groups. CONCLUSIONS: Among children in Burkina Faso and Mali, the addition of azithromycin to the antimalarial agents used for seasonal malaria chemoprevention did not result in a lower incidence of death or hospital admission that was not due to trauma or surgery than antimalarial agents plus placebo, although a lower disease burden was noted with azithromycin than with placebo. (Funded by the Joint Global Health Trials scheme; ClinicalTrials.gov number, NCT02211729.).


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antimalarials/therapeutic use , Azithromycin/therapeutic use , Child Mortality , Hospitalization/statistics & numerical data , Malaria/prevention & control , Amodiaquine/therapeutic use , Burkina Faso/epidemiology , Child, Preschool , Drug Administration Schedule , Drug Combinations , Drug Therapy, Combination , Female , Humans , Incidence , Infant , Infant Mortality , Malaria/mortality , Male , Mali/epidemiology , Mass Drug Administration , Parasitemia/drug therapy , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use
13.
Am J Trop Med Hyg ; 94(6): 1259-65, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27001760

ABSTRACT

We evaluated the use of positive malaria rapid diagnostic tests (mRDTs) to determine genetic diversity of Plasmodium falciparum in Mali. Genetic diversity was assessed via multiple loci variable number of tandem repeats analysis (MLVA). We performed DNA extraction from 104 positive and 30 negative used mRDTs that had been stored at ambient temperature for up to 14 months. Extracted DNA was analyzed via quantitative polymerase chain reaction (qPCR), and MLVA genotyping was then assessed on positive qPCR samples. Eighty-three of the positive mRDTs (83/104, 79.8%) and none of the negative mRDTs were confirmed P. falciparum positive via qPCR. We achieved complete genotyping of 90.4% (75/83) of the qPCR-positive samples. Genotyping revealed high genetic diversity among P. falciparum populations in Mali and an absence of population clustering. We show that mRDTs are useful to monitor P. falciparum genetic diversity and thereby can provide essential data to guide malaria control programs.


Subject(s)
DNA/genetics , Genetic Variation , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Genetic Markers , Genotype , Humans , Malaria, Falciparum/epidemiology , Mali/epidemiology , Polymerase Chain Reaction , Reagent Kits, Diagnostic , Tandem Repeat Sequences
14.
Am J Trop Med Hyg ; 93(4): 790-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26324728

ABSTRACT

Heterogeneity in malaria exposure is most readily recognized in areas with low-transmission patterns. By comparison, little research has been done on spatial patterns in malaria exposure in high-endemic settings. We determined the spatial clustering of clinical malaria incidence, asymptomatic parasite carriage, and Anopheles density in two villages in Mali exposed to low- and mesoendemic-malaria transmission. In the two study areas that were < 1 km(2) in size, we observed evidence for spatial clustering of Anopheles densities or malaria parasite carriage during the dry season. Anopheles density and malaria prevalence appeared associated in some of our detected hotspots. However, many households with high parasite prevalence or high Anopheles densities were located outside the identified hotspots. Our findings indicate that within small villages exposed to low- or mesoendemic-malaria transmission, spatial patterns in mosquito densities and parasite carriage are best detected in the dry season. Considering the high prevalence of parasite carriage outside detected hotspots, the suitability of the area for targeting control efforts to households or areas of more intense malaria transmission may be limited.


Subject(s)
Anopheles , Asymptomatic Infections/epidemiology , Malaria, Falciparum/epidemiology , Animals , Carrier State/epidemiology , Carrier State/parasitology , Incidence , Mali/epidemiology , Population Density , Prevalence , Seasons , Spatial Analysis
15.
PLoS One ; 8(10): e75675, 2013.
Article in English | MEDLINE | ID: mdl-24098393

ABSTRACT

Malaria still remains a major public health problem in Mali, although disease susceptibility varies between ethnic groups, particularly between the Fulani and Dogon. These two sympatric groups share similar socio-cultural factors and malaria transmission rates, but Fulani individuals tend to show significantly higher spleen enlargement scores, lower parasite prevalence, and seem less affected by the disease than their Dogon neighbours. We have used genetic polymorphisms from malaria-associated genes to investigate associations with various malaria metrics between the Fulanai and Dogon groups. Two cross sectional surveys (transmission season 2006, dry season 2007) were performed. Healthy volunteers from the both ethnic groups (n=939) were recruited in a rural setting. In each survey, clinical (spleen enlargement, axillary temperature, weight) and parasitological data (malaria parasite densities and species) were collected, as well as blood samples. One hundred and sixty six SNPs were genotyped and 5 immunoassays (AMA1, CSP, MSP1, MSP2, total IgE) were performed on the DNA and serum samples respectively. The data confirm the reduced malaria susceptibility in the Fulani, with a higher level of the protective O-blood group, and increased circulating antibody levels to several malaria antigens (p<10(-15)). We identified SNP allele frequency differences between the 2 ethnic groups in CD36, IL4, RTN3 and ADCY9. Moreover, polymorphisms in FCER1A, RAD50, TNF, SLC22A4, and IL13 genes were correlated with antibody production (p-value<0.003). Further work is required to understand the mechanisms underpinning these genetic factors.


Subject(s)
Ethnicity/genetics , Genetic Predisposition to Disease/ethnology , Genetic Predisposition to Disease/genetics , Malaria/ethnology , Malaria/genetics , Polymorphism, Single Nucleotide , Sympatry , Adolescent , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Child , Child, Preschool , Cytokines/biosynthesis , Disease Resistance/genetics , Female , Humans , Immunity, Innate/genetics , Infant , Infant, Newborn , Malaria/immunology , Malaria/metabolism , Male , Mali/ethnology , Phenotype , Plasmodium falciparum/immunology , Plasmodium falciparum/physiology
16.
PLoS One ; 4(10): e6732, 2009 Oct 05.
Article in English | MEDLINE | ID: mdl-19802383

ABSTRACT

BACKGROUND: This study was conducted to determine the efficacy of the antimalarial artemisinin-based combination therapy (ACT) artesunate +sulfamethoxypyrazine/pyrimethamine (As+SMP), administered in doses used for malaria, to treat Schistosoma haematobium in school aged children. METHODOLOGY/PRINCIPAL FINDINGS: The study was conducted in Djalakorodji, a peri-urban area of Bamako, Mali, using a double blind setup in which As+SMP was compared with praziquantel (PZQ). Urine samples were examined for Schistosoma haematobium on days -1, 0, 28 and 29. Detection of haematuria, and haematological and biochemical exams were conducted on day 0 and day 28. Clinical exams were performed on days 0, 1, 2, and 28. A total of 800 children were included in the trial. The cure rate obtained without viability testing was 43.9% in the As+SMP group versus 53% in the PZQ group (Chi(2) = 6.44, p = 0.011). Egg reduction rates were 95.6% with PZQ in comparison with 92.8% with As+SMP, p = 0.096. The proportion of participants who experienced adverse events related to the medication was 0.5% (2/400) in As+SMP treated children compared to 2.3% (9/399) in the PZQ group (p = 0.033). Abdominal pain and vomiting were the most frequent adverse events in both treatment arms. All adverse events were categorized as mild. CONCLUSIONS/SIGNIFICANCE: The study demonstrates that PZQ was more effective than As+SMP for treating Schistosoma haematobium. However, the safety and tolerability profile of As+SMP was similar to that seen with PZQ. Our findings suggest that further investigations seem justifiable to determine the dose/efficacy/safety pattern of As+SMP in the treatment of Schistosoma infections. TRIAL REGISTRATION: ClinicalTrials.gov NCT00510159.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/administration & dosage , Drug Combinations , Praziquantel/administration & dosage , Schistosoma haematobium/metabolism , Schistosomiasis haematobia/drug therapy , Sulfalene/administration & dosage , Adolescent , Animals , Artesunate , Child , Double-Blind Method , Female , Humans , Male , Pyrimethamine/administration & dosage , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...